Abstract

The effects of a combination of extrusion processing parameters and aging schedules on the microstructure and mechanical properties of the 7055 Al alloy were investigated. A safe extrusion processing zone is determined through a limit diagram constructed over the experimental initial billet temperature ranging from 380° to 420°C, extrusion ratio from 10:1 to 40:1, and the ram speed ranging from 1 to 15 mm s−1. Microstructural characterization of as-extruded, solution-treated, and artificially-aged materials was carried out using polarized light microscopy (for grain structure) and transmission electron microscopy (for precipitate morphology). A combination of hardness and tensile tests was used to evaluate mechanical properties. It is shown that in 7055 Al alloy, the optimization of alloy composition, extrusion processing parameters, and peak aging treatment results in reproducible tensile properties of 0.2% P.S. = 725 MPa, UTS = 750 MPa, and % elongation = 12.9. In order to improve the stress-corrosion resistance of peak aged material, retrogression and reaging (RRA) temper was established. A strength-electrical conductivity relationship has been established for the RRA temper between 36% and 37% International Annealed Copper Standard (IACS) electrical conductivity to enable selection of suitable combination of properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.