Abstract

Grits from eight different hulled barley cultivars were subjected to extrusion cooking on a twin screw extruder, and the effect of extrusion variables (temperature and moisture) on β-glucan and physicochemical properties was evaluated. The highest bulk density was observed for extrudates extruded at 150 °C and 20% moisture (low temperature high moisture, LTHM) while the highest expansion was observed for the extrudates extruded at 150 °C and 15% moisture (low temperature low moisture). Extrusion reduced the lightness (L*) of the extrudates and the highest decrease observed for LTHM extrudates. Increasing the feed moisture decreased water solubility index (WSI) significantly while increasing the extrusion temperature significantly increased WSI. The high temperature high moisture (HTHM) extrudates exhibited the highest water absorption capacity. The total β-glucan content was not affected by extrusion cooking, but a significant increase in soluble β-glucan was observed with the highest in high temperature low moisture extrudates. The ratio of soluble to insoluble β-glucan varied from 0.7 to 1.5 in the control barley, but after extrusion cooking, the ratio was changed from 1.2 to 3.1. The β-glucan extractability increased by up to 8% after extrusion with extrudates from HTHM showing the highest extractability. The extent of starch gelatinization varied from 80% to 100% upon extrusion, and the highest was observed in HTHM extrudates. A significant decrease in the peak and final viscosity of the extrudates at all the extrusion conditions was observed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call