Abstract
Food safety concerns from spoilage and non-degradable packaging risk human health. Progress made in biodegradable plastic films, but limited study on biomass composite films with favorable morphological, mechanical, and inherent antibacterial properties for fresh meat preservation. Herein, we present a versatile packaging film created through the extrusion blowing process, combining oxidized starch (OST) with poly(butylene adipate-co-terephthalate) (PBAT). SEM analysis revealed even distribution of spherical OST particles on film's surface. FTIR spectra revealed new intermolecular hydrogen bonds between OST and PBAT. While combining OST slightly reduced tensile properties, all composite films met the required strength of 16.5 ± 1.39 MPa. Notably, films with 40 % OST showed over 98 % antibacterial rate against Staphylococcus aureus within 2 h. pH wasn't the main cause of bacterial growth inhibition; OST hindered growth by interfering with nutrient absorption and metabolism due to its carboxyl groups. Additionally, OST disrupted bacterial membrane integrity and cytoplasmic membrane potential. Remarkably, the OST/PBAT film excellently preserved chilled fresh pork, maintaining TVB-N level at 12.6 mg/100 g on day 6, microbial count at 105 CFU/g within 6–10 days, and sensory properties for 8 days. It extended pork's shelf life by two days compared to polyethylene film, suggesting an alternative to a synthetic material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.