Abstract

We propose a method for integrated tool path planning and support structure generation tailored to the specific constraints of extrusion-based ceramics printing. Existing path generation methods for thermoplastic materials rely on transfer moves to navigate between different print paths in a given layer. However, when printing with clay, these transfer moves can lead to severe artifacts and failure. Our method eliminates transfer moves altogether by generating deposition paths that are continuous within and across layers. Our algorithm is implemented as a sequential top-down pass through the layer stack. In each layer, we detect points that require support, connect support points and model paths, and optimize the shape of the resulting continuous path with respect to length, smoothness, and distance to the model. For each of these subproblems, we propose dedicated solutions that take into account the fabrication constraints imposed by printable clay. We evaluate our method on a set of examples with multiple disconnected components and challenging support requirements. Comparisons to existing path generation methods designed for thermoplastic materials show that our method substantially improves print quality and often makes the difference between success and failure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call