Abstract

Abstract. Organosheets combine the advantages of reinforcement fibers and thermoplastic polymers. By pairing these two materials, composites with outstanding mechanical properties and low densities can be produced. These semi-finished products can be further processed into complex and functionalized components by thermoforming or injection molding. There are a number of different manufacturing processes for continuous fiber reinforced thermoplastics (CFRT), however, most of them require long production times and recurrent melting of the polymer resulting in high energy and manufacturing costs. This study presents a novel extrusion process, that enables a continuous production of reinforced thermoplastic sheets with only one melting step. Due to the high energy efficiency and wide range of processible materials, this process shows a high potential for an economical production of CFRT. To investigate the extrusion process in more detail, the influence of the processing and the flow behavior of the polymer on the impregnation quality and the mechanical properties of the composites were studied. The results showed increasing fiber volume contents with lower polymer viscosities. Furthermore, higher die temperatures and pressures resulted in higher fiber volume contents and thus in higher mechanical properties. The experiments also revealed that a complete impregnation can currently not be achieved without an additional small double belt press due to the line load of the calender, the high viscosity of the melt and the short impregnation time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call