Abstract

Feed-forward loop (FFL) is found to be a recurrent structure in bacterial and yeast gene transcription regulatory networks. In a generic FFL, transcription factor (TF) S regulates production of another TF X while both of these TFs regulate production of final gene-product Y. Depending upon the regulatory programs (activation or repression), FFLs are grouped into two broad classes: coherent (C) and incoherent (I), each class containing four distinct types (C1-C4 and I1-I4). These FFL types are experimentally observed to occur with varied frequencies, C1 and I1 being the abundant ones. Here we present a stochastic framework singling out the absolute value of the normalized covariance of X and Y to be the determining factor behind the abundance of FFLs while considering differential promoter activities of X and Y. Our theoretical construct employs two possible signal integration mechanisms (additive and multiplicative) to synthesize Y while steady-state population level of S remains fixed or becomes tunable reflecting two possible environmental signaling scenarios. Our model categorically points out that abundant FFLs exhibit higher amount of the designated metric which has a biophysical connotation of extrinsic noise for the target gene Y. Our predictions emanating from an overarching analytical expression utilizing biologically plausible parametric conditions are substantiated by stochastic simulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call