Abstract

Extrinsic factors to disturb the carrier transport in pentacene field-effect transistors (FETs), as a representative of the high-mobility organic FETs (OFETs), have been comprehensively analyzed by using atomic-force-microscope potentiometry (AFMP), microscopic four-point-probe field-effect transistor (MFPP-FET) measurement, and other techniques. In the first part, by mainly using AFMP as a powerful tool to reveal the potential distribution in working OFETs, we show how and how much the formation of source/drain electrodes influences the apparent field-effect mobility both for top- and bottom-contact configurations. In the second part, we show the influence of irregular grain structures and regular grain boundaries. The films grown both at very low and high temperature ranges contain distinctive insulating parts, which make the apparent mobility very low. Within the moderate growth temperature range, the intrinsic field-effect mobility obtained by MFPP-FET measurement is proportional to the average grain size. This behavior is well explained by the polycrystalline model with the diffusion theory. According to the observations in this work, it is obvious that these extrinsic limiting factors must be carefully excluded to discuss the intrinsic mechanism of the carrier transport in OFETs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call