Abstract

Extrinsic faulting has been discussed previously within the so-called difference method and random walk calculation. In this contribution it is revisited under the framework of computational mechanics, which allows expressions to be derived for the statistical complexity, entropy density and excess entropy as a function of faulting probability. The approach allows one to compare the disordering process of an extrinsic fault with other faulting types. The ℇ-machine description of the faulting mechanics is presented. Several useful analytical expressions such as probability of consecutive symbols in the Hägg coding are presented, as well as hexagonality. The analytical expression for the pairwise correlation function of the layers is derived and compared with results previously reported. The effect of faulting on the interference function is discussed in relation to the diffraction pattern.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call