Abstract

An optical fiber liquid-level sensor based on an extrinsic Fabry-Perot (FP) cavity is proposed and demonstrated. The FP cavity consists of the end of the single-mode optical fiber and the elastic silicon layer. Liquid pressures act on the mechanical construction to change the cavity length, resulting in differential phase shifts that may be observed as variations of the output signal intensity. Self-compensated steps have been taken to obtain high accuracy and long-term stability in realistic circumstances. Experimental results indicate that accuracy of 2 mm over a full scale of 3.5 m (water) is obtained under ambient temperature 10-38 degrees C. The sensor can be used to measure liquid levels continuously and accurately in explosive and flammable environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.