Abstract

The seminal papers of Pickands (Pickands, 1967; Pickands, 1969) paved the way for a systematic study of high exceedance probabilities of both stationary and non-stationary Gaussian processes. Yet, in the vector-valued setting, due to the lack of key tools including Slepian’s Lemma, there has not been any methodological development in the literature for the study of extremes of vector-valued Gaussian processes. In this contribution we develop the uniform double-sum method for the vector-valued setting, obtaining the exact asymptotics of the high exceedance probabilities for both stationary and n on-stationary Gaussian processes. We apply our findings to the operator fractional Brownian motion and Ornstein–Uhlenbeck process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.