Abstract

Performance of the next generation microprocessors is rapidly reaching its limits due to inability to remove heat, especially at high power density from so-called local “hotspots”. Convective boiling heat transfer in microgap heat sinks has the potential to dissipate ultra-high heat fluxes. We report results of an experimental investigation of heat transfer performance of three dedicated microgap coolers for hotspot thermal management. In this study, a rectangular microgap, batch micromachined in silicon and instrumented with thin-film resistive thermometry, is employed to assess its capability of dissipating extreme heat fluxes of multiple kW/cm2 while keeping the wall temperature within the limits dictated by electronics reliability. Convective boiling in microgap with heights of 5 µm and 10 µm was tested with and without pin fins in the microgap. The test section was heated from the bottom using resistive heaters and capped with glass to enable visual observation of two-phase flow regimes. Microgap pressure drop and wall temperature measurements, mapped into flow regimes, were obtained with R134a as the coolant, for heat fluxes up to 5 kW/cm2, mass fluxes up to 7,000 kg/m2s, at maximum pressures up to 1.5 MPa and outlet vapor qualities approaching unity. These experimental parameters constitute extreme values in terms of microgap height (smallest reported to our knowledge), mass fluxes, and heat fluxes. New flow regimes, including vapor plumes, liquid slugs, and ultra-thin wavy liquid film, were observed as a function of increasing heat flux and microgap geometry. Dominant mechanism(s) of two-phase heat transfer responsible for each regime have been postulated based on flow visualization correlated with pressure drop and thermal resistance measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.