Abstract

In this communication, a novel metasurface with multiple unit cells of different thicknesses based on optimized multielement phase cancellation (OMEPC) is proposed for extremely wideband, omnidirectional, and polarization-independent radar cross section (RCS) reduction under wide-angle oblique incidence. Omnidirectional characteristic refers to the capability of RCS reduction under all azimuth angles ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\varphi ^{i}$ </tex-math></inline-formula> ) at certain elevation angles ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\theta ^{i}$ </tex-math></inline-formula> ). The equivalent circuit model of the square patch unit cell is analyzed under both normal and oblique incidences. Unit cells of multiple thicknesses are adopted to solve the in-phase reflection at certain frequencies. The scattered fields of the proposed multiple-element metasurface under different frequencies, polarizations, and incident angles are jointly optimized and simultaneously suppressed by OMEPC. When the range of incident angles is increased from 0° to 40°, the proposed multiple-element metasurface can achieve the 10 dB specular RCS reduction from 7.34 to 64.85 GHz with a ratio bandwidth of 8.84:1 for both TE and TM polarizations, and the 8 dB RCS reduction bandwidth is approximately 6.76–83.70 GHz. The measurement results are in agreement with the theoretical analysis and simulation results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.