Abstract

Extreme tidal disruption events (eTDEs), which occur when a star passes very close to a supermassive black hole, may provide a way to observe a long-sought general relativistic effect: orbits that wind several times around a black hole and then leave. Through general relativistic hydrodynamics simulations, we show that such eTDEs are easily distinguished from most tidal disruptions, in which stars come close, but not so close, to the black hole. Following the stellar orbit, the debris is initially distributed in a crescent, it then turns into a set of tight spirals circling the black hole, which merge into a shell expanding radially outwards. Some mass later falls back toward the black hole, while the remainder is ejected. Internal shocks within the infalling debris power the observed emission. The resulting lightcurve rises rapidly to roughly the Eddington luminosity, maintains this level for between a few weeks and a year (depending on both the stellar mass and the black hole mass), and then drops. Most of its power is in thermal X-rays at a temperature ∼(1–2) × 106 K (∼100–200 eV). The debris evolution and observational features of eTDEs are qualitatively different from ordinary TDEs, making eTDEs a new type of TDE. Although eTDEs are relatively rare for lower-mass black holes, most tidal disruptions around higher-mass black holes are extreme. Their detection offers a view of an exotic relativistic phenomenon previously inaccessible.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call