Abstract

AbstractIn order to utilize the excellent mechanical properties of cellulose whiskers (CWs) along their length, the present work was undertaken to embed CWs with highly oriented forms in a polymer matrix. Nanocomposite fibers were prepared using poly(vinyl alcohol) (PVA; degree of polymerization of 1500) as the matrix and a stable aqueous suspension of CWs extracted from tunicates as the reinforcing phase. Macroscopically homogeneous suspensions of PVA–CW were gel‐spun in a methanol coagulating bath. The as‐spun fibers included CWs oriented along the fiber axis and showed a significant increase in dynamic storage modulus. Hot drawing of the PVA–CW as‐spun fibers to their maximal draw ratio led to extremely high orientation of the CWs together with a drastic reduction in voids in the fiber matrix. Outstanding mechanical properties of the drawn composites were obtained by the incorporation of only a small amount (1 wt% of solid PVA content) of CWs. The stress transfer mechanism in the fibers was studied using an X‐ray diffraction technique by applying stress to the whole composite with in situ monitoring of stress on the incorporated CWs. The applied external stress was found to be translated efficiently to the incorporated CWs through the PVA matrix, suggesting strong interfacial bonding between filler and matrix. The strong interaction and efficient stress transfer between matrix and filler are suggested as the cause for the observed improvements in mechanical properties of the composites. Copyright © 2011 Society of Chemical Industry

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call