Abstract

A promising method for the synthesis of metal oxide nanowires is based on the application of the extremely non-equilibrium gaseous environment found in oxygen plasma created by some types of discharges. The kinetic temperature of neutral gas is kept close to the room temperature, the electron temperature is a few eV, the ionization fraction below 10−6 and the dissociation fraction close to 100%. Plasma with such characteristics is obtained using electrodeless high frequency discharges driven by radiofrequency or microwave generators. Plasma parameters such as the electron density and energy distribution function, the Debye length, the dissociation and ionization fractions, the density of negatively charged molecules, the ratio between the positively charged molecules and atoms and the distribution of atoms and molecules over excited states depend on discharge parameters. The most important discharge parameters are the generator power, frequency and coupling, the purity and pressure of working gas and the gas flow, the dimensions of the discharge chamber, the materials facing plasma, the residual atmosphere, and, usually very importantly though often neglected, the properties of the samples mounted into a discharge chamber. Proper construction of the experimental system for the synthesis of metal oxide nanowires allows for almost 100% dissociation fraction and thus extremely rapid growing of nanowires. The particularities of oxygen plasma as well as real-time monitoring of the dissociation fraction are elaborated in this contribution. The lack of reliable experimental results on characterization of extremely non-equilibrium oxygen plasma is stressed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.