Abstract

In recent years, the relationship between emotion and cognition was a hot topic. However, it remains unclear which specific emotions can significantly interfere with cognition and how they do so. In this study, we designed a novel Affective Stroop experiment paradigm to investigate these issues. The extremely negative (EN), moderately negative (MN), moderately positive (MP), extremely positive (EP) and neutral pictures were displayed before Stroop tasks. The behavioral results revealed that EN emotion significantly interfered with cognitive performance compared to other types of emotions, with a significant increase in reaction time under the EN emotion condition (P < 0.05). Furthermore, the dynamic brain mechanisms were analyzed from both Event-Related Potential (ERP) and time-varying brain network perspectives. Results showed that EN emotion evoked larger N2, P3, and LPP amplitudes in the frontal, parietal, and occipital brain regions. In contrast, the Stroop task under EN condition led to smaller N2, P3, and LPP amplitudes compared to neutral condition. This indicates that EN emotion was prioritized and consumed more cognitive resources relative to neutral emotion. During the P3 and LPP stages, we observed enhanced bottom-up connections between the parietal and frontal regions while the processing of EN emotion. Additionally, there were stronger top-down cognitive control connections from the frontal to the occipital regions while processing the Stroop task under EN condition. These findings consistently suggest that EN emotion interferes with cognition by consuming more cognitive resources, and the brain needs to enhance cognitive control to support Stroop task execution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call