Abstract

Abstract Ultraviolet (UV) observations of local star-forming galaxies have begun to establish an empirical baseline for interpreting the rest-UV spectra of reionization-era galaxies. However, existing high-ionization emission line measurements at z > 6 ($\rm W_{C\, {\scriptscriptstyle IV},0}{} \gtrsim 20$ Å) are uniformly stronger than observed locally ($\rm W_{C\, {\scriptscriptstyle IV},0}{} \lesssim 2$ Å), likely due to the relatively high metallicities (Z/Z$\odot$ > 0.1) typically probed by UV surveys of nearby galaxies. We present new HST/COS spectra of six nearby (z < 0.01) extremely metal-poor galaxies (XMPs, Z/Z$\odot$ ≲ 0.1) targeted to address this limitation and provide constraints on the highly uncertain ionizing spectra powered by low-metallicity massive stars. Our data reveal a range of spectral features, including one of the most prominent nebular C iv doublets yet observed in local star-forming systems and strong He ii emission. Using all published UV observations of local XMPs to date, we find that nebular C iv emission is ubiquitous in very high specific star formation rate systems at low metallicity, but still find equivalent widths smaller than those measured in individual lensed systems at z > 6. Our moderate-resolution HST/COS data allow us to conduct an analysis of the stellar winds in a local nebular C iv emitter, which suggests that some of the tension with z > 6 data may be due to existing local samples not yet probing sufficiently high α/Fe abundance ratios. Our results indicate that C iv emission can play a crucial role in the JWST and ELT era by acting as an accessible signpost of very low metallicity (Z/Z$\odot$ < 0.1) massive stars in assembling reionization-era systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.