Abstract

The projected increases in sea levels are expected to affect coastal ecosystems. Tropical communities, anchored by mangrove trees and having experienced frequent past sea level changes, appear to be vibrant at present. However, any optimism about the resilience of these ecosystems is premature because the impact of past climate events may not be reflected in the current abundance. To assess the impact of historical sea level changes, we conducted an extensive genetic diversity survey on the Indo-Malayan coast, a hotspot with a large global mangrove distribution. A survey of 26 populations in six species reveals extremely low genome-wide nucleotide diversity and hence very small effective population sizes (Ne ) in all populations. Whole-genome sequencing of three mangrove species further shows the decline in Ne to be strongly associated with the speed of past changes in sea level. We also used a recent series of flooding events in Yalong Bay, southern China, to test the robustness of mangroves to sea level changes in relation to their genetic diversity. The events resulted in the death of half of the mangrove trees in this area. Significantly, less genetically diverse mangrove species suffered much greater destruction. The dieback was accompanied by a drastic reduction in local invertebrate biodiversity. We thus predict that tropical coastal communities will be seriously endangered as the global sea level rises. Well-planned coastal development near mangrove forests will be essential to avert this crisis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call