Abstract

A higher intensity THz beam is generated with a free-electron laser (FEL) based on the L-band (1.3 GHz) electron linac at Osaka University by increasing the electron bunch charge four times higher from 1 nC in the conventional mode (the 108 MHz mode) to 4 nC in the new mode (the 27 MHz mode). This is realized by expanding the electron bunch intervals four times longer with the grid pulser of the electron gun, generating a series of 5 ns pulses at a repetition frequency of 27 MHz (the 48th subharmonic of 1.3 GHz), whereas the beam loading of the linac remains unchanged. The energy of an FEL macropulse comprised of many micropulses is measured in the 27 MHz mode to be approximately 28.5 mJ at a maximum of around 65μm or 4.6 THz compared with the maximum macropulse energy of 13 mJ in the 108 MHz mode. The maximum micropulse energy in the 27 MHz mode is approximately 260 μJ using 110 micropulses, which is estimated by a macropulse duration of 4μs and micropulse intervals of 36.9 ns. The micropulse energy is nearly 10 times higher than the micropulse energies in the conventional mode and in other FELs in the same wavelength or frequency region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.