Abstract

The transmission of light through single nanoholes with diameters considerably smaller than the wavelength of light (smaller than λ/10) is experimentally studied. The nanoholes were made in a gold film, which is a part of a photonic crystal forming a microcavity with the quality factor Q ≈ 100. A 28-fold increase in the transmission of light through a nanohole inside the microcavity compared to transmission through a nanohole in a gold film is demonstrated. The high spectral selectivity of light transmission through a nanohole is discovered, which is characterized by two features: (i) the transmission maximum is located at the resonance wavelength of the microcavity and (ii) the peak full width at half-maximum is about λ/90.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.