Abstract

A unique feature of the extremely long-range-extended blockade regime with its shape of a long stick, where the Coulomb blockade oscillation and negative differential conductance peak-positions can be systematically and precisely modulated for both extremely-wide VG and VD ranges, was clearly observed in a room-temperature-operating silicon single hole transistor. These results originate from the large quantum level spacing, large tunnel-barrier height, small tunnel-barrier curvature, small bias-induced barrier modulation, and large voltage gain, attributing to the formation of an ultrasmall dot in the gently sloped tunnel barriers along the [100] Si nanowire channel having the large subband modulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.