Abstract

Theoretically, tetragonal lattice distortion of FeCo epitaxial films can result in a very large in‐plane magnetic anisotropy field, leading to an extremely high ferromagnetic resonance (FMR) frequency. Herein, thin films are epitaxially grown on (001) MgAl2O4 single‐crystal substrates. A triclinic lattice distortion with , instead of a tetragonal one, is found in the FeCo films. The cubic symmetry breaking leads to a deviation of easy axes from the directions, forming a distribution of magnetic moments with a strong perpendicular magnetic anisotropy (PMA) along the out‐of‐plane [001] directions and a deviation of the in‐plane components from the ([10 100]) directions. The effective field of the former is as high as 1.5–2.5 T, enough to overcome the thin film shape anisotropy, while that of the latter stays at a low value of around 0.05 T. The strain‐induced PMA gradually relaxes to in‐plane for thicker films with a strained sublayer remaining. As a result, an extremely high out‐of‐plane FMR frequency over 40 GHz is achieved, accompanied by a lower in‐plane FMR frequency around 8 GHz. This study provides a possible approach to prepare self‐biased soft magnetic films with extremely high‐resonance frequency for applications in microwave‐integrated circuits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call