Abstract
The sidewall material is a key component in new electrolytic cell with an inert electrode for the aluminum electrolysis industry. The continuous development of novel sidewall materials with excellent corrosion resistance in molten salts electrolyte is an important topic. Herein, a new system of sidewall material, spinel structured ZnxNi1–xCr2O4 (x = 0 – 1), is prepared by solid-phase reaction and the corrosion-resistance enhancement is investigated. The results prove that Zn2+ plays two roles in the ZnxNi1–xCr2O4 spinels. Firstly, Zn2+ tunes the surface energies of spinels resulting in the octahedral grains, which suppresses the cation diffusion in the corrosion process. Secondly, Zn2+ stabilizes the Cr3+ in the spinels. As a result, the Zn0.5Ni0.5Cr2O4 spinel displays an extremely low corrosion rate ∼0.007 cm·a–1 in NaF-KF-AlF3 bath at 800 °C comparing with other sidewall materials. The as-obtained spinel shows great potential as a novel sidewall material for the new electrolytic cell.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.