Abstract

We present a class of two-dimensional memristive maps with a cosine memristor. The memristive maps do not have any fixed points, so they belong to the category of nonlinear maps with hidden attractors. The rich dynamical behaviors of these maps are studied and investigated using different numerical tools, including phase portrait, basins of attraction, bifurcation diagram, and Lyapunov exponents. The two-parameter bifurcation analysis of the memristive map is carried out to reveal the bifurcation mechanism of its dynamical behaviors. Based on our extensive simulation studies, the proposed memristive maps can produce hidden periodic, chaotic, and hyper-chaotic attractors, exhibiting extremely hidden multi-stability, namely the coexistence of infinite hidden attractors, which was rarely observed in memristive maps. Potentially, this work can be used for some real applications in secure communication, such as data and image encryptions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.