Abstract

P-type chemical doping (p-doping) is a key technique to modulate the optical, electrical, and electronic properties of organic semiconductors. However, typical functional groups in organic p-dopants have insufficient electron-withdrawing strength, and the inevitable diffusion of dopants in host matrices degrades doping stabilities. Herein, we utilize extremely electron-withdrawing Lewis-paired CN groups as a new class of building blocks for designing unprecedentedly strong organic p-dopants with excellent doping stability. Various Lewis acids are paired with CN-functionalized conjugated molecules in the solution state, which strengthens the electron-withdrawing properties of CN groups almost twofold. The large dopants afford outstanding doping stability against continuous heating and long-term atmospheric exposure, which is promising for practical applications in devices. Given the broad applicability of this simple combinatorial approach, it may impact many fields of (opto)electronics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call