Abstract

Modulational, Benjamin-Feir, instability is studied for the down-stream evolution of surface gravity waves. An explicit solution, the soliton on finite background, of the NLS equation in physical space is used to study various phenomena in detail. It is shown that for sufficiently long modulation lengths, at a unique position where the largest waves appear, phase singularities are present in the time signal. These singularities are related to wave dislocations and lead to a discrimination between successive ‘extreme’ waves and much smaller intermittent waves. Energy flow in opposite directions through successive dislocations at which waves merge and split, causes the large amplitude difference. The envelope of the time signal at that point is shown to have a simple phase plane representation, and will be described by a symmetry breaking unfolding of the steady state solutions of NLS. The results are used together with the maximal temporal amplitude MTA, to design a strategy for the generation of extreme (freak, rogue) waves in hydrodynamic laboratories.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.