Abstract

We combine our version of the resonance method with certain convolution formulas for $\zeta(s)$ and $\log\, \zeta(s)$. This leads to a new $\Omega$ result for $|\zeta(1/2+it)|$: The maximum of $|\zeta(1/2+it)|$ on the interval $1 \le t \le T$ is at least $\exp\left((1+o(1)) \sqrt{\log T \log\log\log T/\log\log T}\right)$. We also obtain conditional results for $S(t):=1/\pi$ times the argument of $\zeta(1/2+it)$ and $S_1(t):=\int_0^t S(\tau)d\tau$. On the Riemann hypothesis, the maximum of $|S(t)|$ is at least $c \sqrt{\log T \log\log\log T/\log\log T}$ and the maximum of $S_1(t)$ is at least $c_1 \sqrt{\log T \log\log\log T/(\log\log T)^3}$ on the interval $T^{\beta} \le t \le T$ whenever $0\le \beta < 1$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.