Abstract

Despite the key role played by inhibitory-excitatory couplings in the functioning of brain networks, the impact of a balanced condition on the stability properties of underlying networks remains largely unknown. We investigate properties of the largest eigenvalues of networks having such couplings, and find that they follow completely different statistics when in the balanced situation. Based on numerical simulations, we demonstrate that the transition from Weibull to Fréchet via the Gumbel distribution can be controlled by the variance of the column sum of the adjacency matrix, which depends monotonically on the denseness of the underlying network. As a balanced condition is imposed, the largest real part of the eigenvalue emulates a transition to the generalized extreme-value statistics, independent of the inhibitory connection probability. Furthermore, the transition to the Weibull statistics and the small-world transition occur at the same rewiring probability, reflecting a more stable system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.