Abstract
The generalized extreme value distribution (GEVD) and various extreme value distributions are commonly applied in air pollution, telecommunications, operational risk management, finance, insurance, material sciences, economics, and hydrology, among many other industries that deal with extreme events. Extreme value distributions (EVDs) typically limit the distribution of maximum and minimum values for many random observations drawn from the same arbitrary distribution. Besides that, it is a crucial method for forecasting future events and emerged as critical method for predicting future events. As a result, prior research is required to select the best estimation method to obtain a reliable value for the parameters of extreme value distributions. This study provides an overview of three-parameter estimation methods based on goodness-of-fit statistics and root mean square error (RMSE). This paper reviewed and compared three estimation methods used to approximate values of parameters for simulated observations taken from the EVD and GEVD. The method of moments (MOMs), maximum likelihood estimator (MLE), and maximum product of spacing (MPS) were the methods investigated in this study. Our findings indicated that the MPS performed better based on the mean square errors (MSEs); meanwhile, the MPS had similar goodness-of-fit statistic values compared to the MLE.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.