Abstract
Denoising by frame thresholding is one of the most basic and efficient methods for recovering a discrete signal or image from data that are corrupted by additive Gaussian white noise. The basic idea is to select a frame of analyzing elements that separates the data in few large coefficients due to the signal and many small coefficients mainly due to the noise ϵn. Removing all data coefficients being in magnitude below a certain threshold yields a reconstruction of the original signal. In order to properly balance the amount of noise to be removed and the relevant signal features to be kept, a precise understanding of the statistical properties of thresholding is important. For that purpose we derive the asymptotic distribution of maxω∈Ωn|〈ϕωn,ϵn〉| for a wide class of redundant frames (ϕωn:ω∈Ωn). Based on our theoretical results we give a rationale for universal extreme value thresholding techniques yielding asymptotically sharp confidence regions and smoothness estimates corresponding to prescribed significance levels. The results cover many frames used in imaging and signal recovery applications, such as redundant wavelet systems, curvelet frames, or unions of bases. We show that ‘generically’ a standard Gumbel law results as it is known from the case of orthonormal wavelet bases. However, for specific highly redundant frames other limiting laws may occur. We indeed verify that the translation invariant wavelet transform shows a different asymptotic behaviour.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.