Abstract
In the design of highway bridges, it is important to consider the thermal stresses induced by the nonlinear temperature distribution in the bridge deck irrespective of their spans. To cope with this, design temperature profiles are provided by many bridge design codes, which are normally based on extensive research on the thermal behavior of bridges. This paper presents the results of a comprehensive investigation on the thermal behavior of steel bridges carried out in Hong Kong. A method for predicting bridge temperatures from given meteorological conditions is briefly discussed. The theoretical results have been validated by temperature measurements on experimental models mounted on the roof of a building as well as on an existing steel bridge. Both the theoretical and field results confirm the validity of the one-dimensional heat transfer model on which most design codes are based. Values of design thermal loading for a 50-year return period are determined from the statistics of extremes over 40 years of meteorological information in Hong Kong. The design temperature profiles for various types of steel bridge deck with different thickness of bituminous surfacing are developed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.