Abstract

Ti0.5Sn0.5O2 nanoparticles (∼5 nm and ∼10 nm) have been studied under high pressure by Raman spectroscopy. For particles with diameter ∼10 nm, a transformation has been observed at 20-25 GPa while for particles with ∼5 nm diameter no phase transition has been observed up to ∼30 GPa. The Ti0.5Sn0.5O2 solid solution shows an extended stability at the nanoscale, both of its cationic and anionic sublattices. This ultrastability originates from the contribution of Ti and Sn mixing: Sn stabilizes the cationic network at high pressure and Ti ensures a coupling between the cationic and anionic sublattices. This result questions a "traditional" crystallographic description based on polyhedra packing and this synergistic effect reported in this work is similar to the case of metamaterials but at the nanoscale.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.