Abstract
We demonstrate that two-dimensional crystals made of active particles can experience extremely large spontaneous deformations without melting. Using particles mostly interacting via pairwise repulsive forces, we show that such active crystals maintain long-range bond order and algebraically decaying positional order, but with an exponent η not limited by the 1/3 bound given by the (equilibrium) KTHNY theory. We rationalize our findings using linear elastic theory and show the existence of two well-defined effective temperatures quantifying respectively large-scale deformations and bond-order fluctuations. The root of these phenomena lies in the sole time-persistence of the intrinsic axes of particles, and they should thus be observed in many different situations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.