Abstract

AbstractDirect numerical simulation (DNS) of liquid film flow is used to compute fully developed solitary waves and to compare their characteristics with the predictions of low-dimensional models. Emphasis is placed on the regime of high inertia, where available models provide widely differing results. It is found that the parametric dependence of wave properties on inertia is highly non-trivial, and is satisfactorily approximated only by the four-equation model of Ruyer-Quil & Manneville (Eur. Phys. J. B, vol. 15, 2000, pp. 357–369). Detailed comparison of the asymptotic shapes of upstream and downstream tails is performed, and inherent limitations of all long-wave models are revealed. Local flow reversal in front of the main hump, which has been previously discussed in the literature, is shown to occur for an inertia range bounded from below and from above, and the boundaries are interpreted in terms of the capillary origin of the phenomenon. Computational results are reported for the entire range of Froude numbers, providing benchmark data for all wall inclinations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.