Abstract

We present an efficient and scalable solution to estimate uncertain transport behaviors-stochastic flow maps (SFMs)-for visualizing and analyzing uncertain unsteady flows. Computing flow maps from uncertain flow fields is extremely expensive because it requires many Monte Carlo runs to trace densely seeded particles in the flow. We reduce the computational cost by decoupling the time dependencies in SFMs so that we can process shorter sub time intervals independently and then compose them together for longer time periods. Adaptive refinement is also used to reduce the number of runs for each location. We parallelize over tasks-packets of particles in our design-to achieve high efficiency in MPI/thread hybrid programming. Such a task model also enables CPU/GPU coprocessing. We show the scalability on two supercomputers, Mira (up to 256K Blue Gene/Q cores) and Titan (up to 128K Opteron cores and 8K GPUs), that can trace billions of particles in seconds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.