Abstract
AbstractRelativistic electrons (E > 500 keV) cause internal charging and are an important space weather hazard. To assess the vulnerability of the satellite fleet to these so‐called “killer” electrons, it is essential to estimate reasonable worst cases, and, in particular, to estimate the flux levels that may be reached once in 10 and once in 100 years. In this study we perform an extreme value analysis of the relativistic electron fluxes in the Earth's outer radiation belt as a function of energy and L∗. We use data from the Radiation Environment Monitor (IREM) on board the International Gamma Ray Astrophysical Laboratory (INTEGRAL) spacecraft from 17 October 2002 to 31 December 2016. The 1 in 10 year flux at L∗=4.5, representative of equatorial medium Earth orbit, decreases with increasing energy ranging from 1.36 × 107 cm−2 s−1 sr−1 MeV−1 at E = 0.69 MeV to 5.34 × 105 cm−2 s−1 sr−1 MeV−1 at E = 2.05 MeV. The 1 in 100 year flux at L∗=4.5 is generally a factor of 1.1 to 1.2 larger than the corresponding 1 in 10 year flux. The 1 in 10 year flux at L∗=6.0, representative of geosynchronous orbit, decreases with increasing energy ranging from 4.35 × 106 cm−2 s−1 sr−1 MeV−1 at E = 0.69 MeV to 1.16 × 105 cm−2 s−1 sr−1 MeV−1 at E = 2.05 MeV. The 1 in 100 year flux at L∗=6.0 is generally a factor of 1.1 to 1.4 larger than the corresponding 1 in 10 year flux. The ratio of the 1 in 10 year flux at L∗=4.5 to that at L∗=6.0 increases with increasing energy ranging from 3.1 at E = 0.69 MeV to 4.6 at E = 2.05 MeV.
Highlights
The twin drivers of globalization and technological advance have created a developed and developing world that are increasingly dependent on satellite technology for communication, navigation, Earth observation, and defence
The 1 in 10 year flux at L∗ = 4.5, representative of equatorial medium Earth orbit, decreases with increasing energy ranging from 1.36 × 107 cm−2 s−1 sr−1 MeV−1 at E = 0.69 MeV to 5.34 × 105 cm−2 s−1 sr−1 MeV−1 at E = 2.05 MeV
The 1 in 10 year flux at L∗ = 6.0, representative of geosynchronous orbit, decreases with increasing energy ranging from 4.35 × 106 cm−2 s−1 sr−1 MeV−1 at E = 0.69 MeV to 1.16 × 105 cm−2 s−1 sr−1 MeV−1 at E = 2.05 MeV
Summary
The twin drivers of globalization and technological advance have created a developed and developing world that are increasingly dependent on satellite technology for communication, navigation, Earth observation, and defence. In 2015, the total revenue generated by the satellite industry was U.S $208.3 billion, an increase of 3% on the previous year [Satellite Industry Association, 2016]. This growing infrastructure is increasingly vulnerable to the damaging effects of space weather [Krausmann, 2011]. The concern is such that governments around the world regard extreme space weather as a potential emergency situation [Strategic National Risk Assessment, 2011; Cabinet Office, 2012]. Extreme space weather events have a real capacity to damage this infrastructure, as happened during a major storm in 2003 when 10% of the satellite fleet experienced anomalies and one satellite was a complete loss [Webb and Allen, 2004]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.