Abstract

With the inclusion of demographic characteristics of the population living in vulnerable areas, a combination of empirical and climate models was used to project changes to climate and in hydro-geo-meteorological disasters in Brazil. This study investigated the effect of extreme rainfall changes and the risk of floods and landslides under 1.5, 2.0, and 4.0°C global warming levels (GWLs). Projections from a large ensemble of pre-CMIP6 models and different warming levels show a remarkable change in heavy precipitation. As a result, with increasing warming this enhances the risk of landslides and flash floods in the context of climate change. Comparisons of vulnerability and change in potential impacts of landslides and floods show that three regions, highly densely populated areas, are the most exposed to landslides and floods. The Southern and Southeastern of Brazil stand out, including metropolitan regions with high economic development and densely populated, which may be those where disasters can intensify both in terms of frequency and magnitude. The eastern portion of the Northeast is also signaled as one of the affected regions due to its high vulnerability and exposure since the present period, although the projections of future climate do not allow conclusive results regarding the intensification of extreme rainfall events in scenarios below 4°C. The main metropolitan regions and tourist resorts, and key infrastructure in Brazil are located in those regions. This study highlights the importance of environmental policies to protect human lives and minimize financial losses in the coming decades and reinforces the need for decision-making, monitoring, and early warning systems to better manage disasters as part of disaster risk reduction risk management.

Highlights

  • Present and future climate extremes imply adverse impacts on natural and human systems

  • Southern Brazil is the most exposed and vulnerable to climate-related disasters triggered by extreme rainfall (Ávila et al, 2016; De Almeida et al, 2016; Debortoli et al, 2017; Alvala et al, 2019)

  • This was done by comparing with a history of disasters provided by CEMADEN and Federal Civil Defense at the municipality considered level

Read more

Summary

Introduction

Present and future climate extremes imply adverse impacts on natural and human systems. These extreme events are anticipated to be among the potentially most harmful consequences of a changing climate. It is very difficult to translate changes in the intensity, duration, and frequency of weather and climate extremes (i.e., hazards) into actual risks for specific sectors and/or locations, or, even further, to express these in quantitative terms, mainly because we lack sufficient knowledge of the socioeconomic and environmental implications, including data on vulnerabilities and exposure (IPCC, 2012). Intense rainfall has increased in southern Brazil (Dunn et al, 2020), and in the Metropolitan Region of São Paulo this increase in the last seven decades caused disruption to transport, flooding and landslides (Marengo et al, 2020a,b)

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.