Abstract

The prospect of next-generation ultra-high-intensity laser sources has prompted recent renewed study of nonlinear QED processes, such as the Schwinger effect, in which the instability of the QED vacuum is probed by external fields. Experimental observation of these nonlinear QED effects would provide unprecedented controlled access to non-perturbative processes in quantum field theory under extreme conditions, which is of direct interest in particle physics and astrophysical applications. I summarize important theoretical issues, both conceptual and computational, related to these nonlinear QED effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.