Abstract

Nitrate accumulation in the soil profile in the intensive agricultural region has been widely concerned in the world. However, the changes in nitrate accumulation characteristics caused by climate change, such as extremely high precipitation, are not well quantified, particularly for the regions with thick unsaturated zones. Here, we resampled the soil profiles taken in normal year (2020) after extreme precipitation year (2021) (>800 cm) in three regions in the southern Loess Plateau (LP) with three different water managements including rainfed orchards (n = 10), well-irrigated orchards (n = 4) and canal-irrigated orchards (n = 8). The accumulation amounts, peak depths, and accumulation depths of nitrate soil profiles of the different regions of two years were compared. The results showed that average nitrate accumulation in normal year at the rainfed region (800-cm depth), well-irrigated region (800-cm depth) and canal-irrigated region (1400-cm depth) were 5995 kg N ha−1, 9765 kg N ha−1, and 19,608 kg N ha−1, respectively. Compared with 2020, extreme precipitation in 2021 led to 56–91% reductions (2060–3702 kg N ha−1) in nitrate accumulation in 0–200 cm soil layer, and average nitrate leaching into the aquifer was >1390 kg N ha−1 in the canal-irrigated region. Average migration depths of nitrate peak in rainfed, well-irrigated and canal-irrigated regions were 92 cm, 115 cm, and 188 cm, respectively; as for nitrate accumulation depths, they were 10 cm, 80 cm and 108 cm, respectively. Vertically, the dried soil layer and paleosol layer (high clay content) in the canal-irrigated region significantly hindered nitrate deep migration caused by the extreme precipitation. The result highlights that extreme precipitation significantly accelerated nitrate leaching in the deep soil profiles, and future vulnerability and risk assessment studies must account for the impacts of extreme precipitation on nitrate leaching.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.