Abstract

The evolution of an extreme positive Indian Ocean Dipole (pIOD) that took place in the tropical Indian Ocean during the late boreal summer to early winter of 2019 is examined in terms of coupled ocean–atmosphere dynamics. The patterns of anomalous sea-surface temperature (SST) revealed a typical pIOD characteristic: cooling (warming) in the southeastern (western) tropical Indian Ocean. Based on the Dipole Mode Index (DMI), the evolution of the event started in mid-July and gradually strengthened with an abrupt weakening in early September before coming to its peak in late October/early November. It quickly weakened in November, and then it terminated in mid-December. During the peak phase of the event, the SST anomaly in the southeastern (western) tropical Indian Ocean reached about −2 °C (+1 °C). The pattern of anomalous SST was followed by an anomalous pattern in precipitation, in which deficit precipitation was observed over the eastern Indian Ocean, particularly over the Indonesia region. Earlier study has shown that dry conditions associated with the pIOD event created a favorable condition for a forest-peat fire in southern Sumatra. The number of fire hotspots has increased significantly during the peak phase of the 2019 pIOD event. In addition, anomalously strong upwelling forced by strong southeasterly wind anomalies along the southern coast of Java and Sumatra had induced a surface chlorophyll-a (Chl-a) bloom in this region. High surface Chl-a concentration was collocated with the negative SST anomalies observed off the southwest Sumatra coast and south Java.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.