Abstract

The conformal loop ensemble $\operatorname {CLE}_{\kappa}$ with parameter $8/3<\kappa<8$ is the canonical conformally invariant measure on countably infinite collections of noncrossing loops in a simply connected domain. Given $\kappa$ and $\nu$, we compute the almost-sure Hausdorff dimension of the set of points $z$ for which the number of CLE loops surrounding the disk of radius $\varepsilon$ centered at $z$ has asymptotic growth $\nu\log (1/\varepsilon )$ as $\varepsilon \to0$. By extending these results to a setting in which the loops are given i.i.d. weights, we give a CLE-based treatment of the extremes of the Gaussian free field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.