Abstract
Although most studies have treated attribute value extraction (AVE) as named entity recognition, these approaches are not practical in real-world e-commerce platforms because they perform poorly, and require canonicalization of extracted values. Furthermore, since values needed for actual services is static in many attributes, extraction of new values is not always necessary. Given the above, we formalize AVE as extreme multi-label classification (XMC). A major problem in solving AVE as XMC is that the distribution between positive and negative labels for products is heavily imbalanced. To mitigate the negative impact derived from such biased distribution, we propose label masking, a simple and effective method to reduce the number of negative labels in training. We exploit attribute taxonomy designed for e-commerce platforms to determine which labels are negative for products. Experimental results using a dataset collected from a Japanese e-commerce platform demonstrate that the label masking improves micro and macro F1 scores by 3.38 and 23.20 points, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.