Abstract

Methane (CH 4) in terrestrial environments, whether microbial, thermogenic, or abiogenic, exhibits a large variance in C and H stable isotope ratios due to primary processes of formation. Isotopic variability can be broadened through secondary, post-genetic processes, such as mixing and isotopic fractionation by oxidation. The highest and lowest 13C and 2H (or D, deuterium) concentrations in CH 4 found in various geologic environments to date, are defined as “natural” terrestrial extremes. We have discovered a new extreme in a natural gas seep with values of deuterium concentrations, δD CH4, up to + 124‰ that far exceed those reported for any terrestrial gas. The gas, seeping from the small Homorod mud volcano in Transylvania (Romania), also has extremely high concentrations of nitrogen (> 92 vol.%) and helium (up to 1.4 vol.%). Carbon isotopes in CH 4, C 2H 6 and CO 2, and nitrogen isotopes in N 2 indicate a primary organic sedimentary origin for the gas (a minor mantle component is suggested by the 3He/ 4He ratio, R/Ra ~ 0.39). Both thermogenic gas formation modeling and Rayleigh fractionation modeling suggest that the extreme deuterium enrichment could be explained by an oxidation process characterised by a δD CH4 and δ 13C CH4 enrichment ratio (ΔH/ΔC) of about 20, and may be accounted for by abiogenic oxidation mediated by metal oxides. All favourable conditions for such a process exist in the Homorod area, where increased heat flow during Pliocene–Quaternary volcanism may have played a key role. Finally we observed rapid variations (within 1 h) in C and H isotope ratios of CH 4, and in the H 2S concentrations which are likely caused by mixing of the deep oxidized CH 4–N 2–H 2S–He rich gas with a microbial methane generated in the mud pool of one of the seeps. We hypothesize that the unusual features of Homorod gas can be the result of a rare combination of factors induced by the proximity of sedimentary organic matter, mafic, metal-rich volcanic rocks and salt diapirs, leading to the following processes: a) primary thermogenic generation of gas at temperatures between 130 and 175 °C; b) secondary alteration through abiogenic oxidation, likely triggered by the Neogene–Quaternary volcanism of the eastern Transylvanian margin; and c) mixing at the surface with microbial methane that formed through fermentation in the mud volcano water pool. The Homorod gas seep is a rare example that demonstrates how post-genetic processes can produce extreme gas isotope signatures (thus far only theorized), and that extremely positive δD CH4 values cannot be used to unambiguously distinguish between biotic and abiotic origin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.