Abstract

AbstractCrustal metamorphism under extreme pressure-temperature conditions produces characteristic ultrahigh-pressure (UHP) and ultrahigh-temperature (UHT) mineral assemblages at convergent plate boundaries. The formation and evolution of these assemblages have important implications, not only for the generation and differentiation of continental crust through the operation of plate tectonics, but also for mountain building along both converging and converged plate boundaries. In principle, extreme metamorphic products can be linked to their lower-grade counterparts in the same metamorphic facies series. They range from UHP through high-pressure (HP) eclogite facies to blueschist facies at low thermal gradients and from UHT through high-temperature (HT) granulite facies to amphibolite facies at high thermal gradients. The former is produced by low-temperature/pressure (T/P) Alpine-type metamorphism during compressional heating in active subduction zones, whereas the latter is generated by high-T/P Buchan-type metamorphism during extensional heating in rifting zones. The thermal gradient of crustal metamorphism at convergent plate boundaries changes in both time and space, with low-T/P ratios in the compressional regime during subduction but high-T/P ratios in the extensional regime during rifting. In particular, bimodal metamorphism, one colder and the other hotter, would develop one after the other at convergent plate boundaries. The first is caused by lithospheric subduction at lower thermal gradients and thus proceeds in the compressional stage of convergent plate boundaries; the second is caused by lithospheric rifting at higher thermal gradients and thus proceeds in the extensional stage of convergent plate boundaries. In this regard, bimodal metamorphism is primarily dictated by changes in both the thermal state and the dynamic regime along plate boundaries. As a consequence, supercontinent assembly is associated with compressional metamorphism during continental collision, whereas supercontinent breakup is associated with extensional metamorphism during active rifting. Nevertheless, aborted rifts are common at convergent plate boundaries, indicating thinning of the previously thickened lithosphere during the attempted breakup of supercontinents in the history of Earth. Therefore, extreme metamorphism has great bearing not only on reworking of accretionary and collisional orogens for mountain building in continental interiors, but also on supercontinent dynamics in the Wilson cycle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call