Abstract
AbstractSome of the highest and most localized rates of lithospheric deformation in the world are observed at the transition between adjacent plate boundary subduction segments. The initiating perturbation of this deformation has long been attributed to vigorous erosional processes as observed at Nanga Parbat and Namche Barwa in the Himalaya and at Mount St. Elias in Alaska. However, an erosion‐dominated mechanism ignores the 3‐D geometry of curved subducting plates. Here we present an alternative explanation for rapid exhumation at these locations based on the 3‐D thermomechanical evolution of collisions between plates with nonplanar geometries. Comparison of model predictions with existing data reproduces the defining characteristics of these mountains and offers an explanation for their spatial correlation with arc termini. These results demonstrate a “bottom‐up” tectonic rather than “top‐down” erosional initiation of feedbacks between erosion and tectonic deformation; hence, the importance of 3‐D subduction geometry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.