Abstract

Soil temperature (TS) is a crucial parameter in many fields, especially agriculture. In developing countries like Algeria, the soil temperatures (TS) and the meteorological data are limited. This study investigates the use of Extreme Learning Machine (ELM) for the accurate prediction of daily ST at three different depths (30cm, 60cm, and 100cm) using a minimal number of climatic inputs. The inputs used in this study include maximum and minimum air temperatures, relative humidity, and day of the year (DOY) as a representative of the temporal component. Five different combinations of inputs were used to develop ELM models and determine the best set of input variables. The ELM models were then compared with traditional methods such as multiple linear regression, artificial neural networks, and adaptive neuro-fuzzy inference system. Based on evaluation metrics such as R, RMSE, and MAPE, the ELM models with air temperatures and DOY as inputs (ELM-M0 and ELM-M3) demonstrated superior performance at all depths when compared to the other techniques. The most accurate predictions were found at a depth of 100cm using the ELM-M3 model, which employed inputs of minimum and maximum air temperatures and DOY, with R value of 0.98, RMSE of 0.68°C, and MAPE of 3.4%. The results demonstrate that the inclusion of DOY in the climatic dataset significantly enhances the performance and accuracy of machine learning models for ST prediction. The ELM was found to be a fast, simple, effective, and useful tool for TS prediction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.