Abstract

Recently, the neural network approach for the blocking probability evaluation on optical networks was proposed, in which the inputs of the neural network were the optical network parameters and the output was the blocking probability of the optical network. The numerical results showed that its evaluation speed of the blocking probability was thousands of times faster than that of the discrete event simulator. However, the existing approach had two drawbacks. First, when the blocking probability was small, there was a significant approximation error due to the high dynamic range of the blocking probability. Second, the single-hidden-layer feedforward network model was used, which needed some time-consuming training algorithms to learn the parameters of hidden nodes, such as backpropagation. To solve these problems, this paper proposes to use the mean squared error of the log blocking probability as the training objective and use the extreme learning machine (ELM) framework for the training. Our numerical results show that the blocking probability estimated by our training objective is much more accurate than that of the existing approach, and it is obtained efficiently due to the greatly simplified training procedure offered by the ELM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.