Abstract

Abstract Traffic incidents in big cities are increasing alongside economic growth, causing traffic delays and deteriorating road safety conditions. Thus, developing a universal freeway automatic incident detection (AID) algorithm is a task that took the interest of researchers. This paper presents a novel automatic traffic incident detection method based on the extreme learning machine (ELM) algorithm. Furthermore, transfer learning has recently gained popularity as it can successfully generalise information across multiple tasks. This paper aimed to develop a new approach for the traffic domain-based domain adaptation. The ELM was used as a classifier for detection, and target domain adaptation transfer ELM (TELM-TDA) was used as a tool to transfer knowledge between environments to benefit from past experiences. The detection performance was evaluated by common criteria including detection rate, false alarm rate, and others. To prove the efficiency of the proposed method, a comparison was first made between back-propagation neural network and ELM; then, another comparison was made between ELM and TELM-TDA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.