Abstract

In recent years, learning based machine intelligence has aroused a lot of attention across science and engineering. Particularly in the field of automatic industry inspection, the machine learning based vision inspection plays a more and more important role in defect identification and feature extraction. Through learning from image samples, many features of industry objects, such as shapes, positions, and orientations angles, can be obtained and then can be well utilized to determine whether there is defect or not. However, the robustness and the quickness are not easily achieved in such inspection way. In this work, for solar panel vision inspection, we present an extreme learning machine (ELM) and moving least square regression based approach to identify solder joint defect and detect the panel position. Firstly, histogram peaks distribution (HPD) and fractional calculus are applied for image preprocessing. Then an ELM-based defective solder joints identification is discussed in detail. Finally, moving least square regression (MLSR) algorithm is introduced for solar panel position determination. Experimental results and comparisons show that the proposed ELM and MLSR based inspection method is efficient not only in detection accuracy but also in processing speed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.