Abstract

Let Ω be an open subset of Rd, d≥2, and let x∈Ω. A Jensen measure for x on Ω is a Borel probability measure μ, supported on a compact subset of Ω, such that ∫u dμ≤u(x) for every superharmonic function u on Ω. Denote by Jx(Ω) the family of Jensen measures for x on Ω. We present two characterizations of ext(Jx(Ω)), the set of extreme elements of Jx(Ω). The first is in terms of finely harmonic measures, and the second as limits of harmonic measures on decreasing sequences of domains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.